
Django Form Builder
Release 0.1

Università della Calabria

Sep 07, 2023

INSTALLATION

1 Requirements and Setup 3

2 Use single fields in your form 5

3 Fields methods and attributes 7

4 Create your own fields 9

5 Build dynamic forms 11

6 Create your DynamicFormClass and add static fields 15

7 Configure your project to use dynamic forms 17

8 Upload P7M and signed PDF files 21

9 Add/Remove Formset dynamically with javascript 23

i

ii

Django Form Builder, Release 0.1

A Django Framework application to build dynamic forms and define custom form fields types.

Github: https://github.com/UniversitaDellaCalabria/django-form-builder

Features:
• Forms definitions via JSON object;

• Save compiled form as JSON objects in model db and get its structure and contents with a simple model method
call;

• Override form constructor in order to add static common fields;

• Create input fields using heritable classes, with customizable validation methods;

• Manage Django Formset fields, with form insertion and removal via javascript;

• Manage and verify digitally signed file fields (PDF and P7M) without a certification authority validation (TODO
via third-party API).

INSTALLATION 1

https://github.com/UniversitaDellaCalabria/django-form-builder

Django Form Builder, Release 0.1

2 INSTALLATION

CHAPTER

ONE

REQUIREMENTS AND SETUP

Install ``django-form-builder`

Only FileSignatureValidator library is required as system dependency, it is needed to verify digitally signed
attachments. See also requirements for python requirements.

pip install git+https://github.com/peppelinux/FileSignatureValidator.git

In INSTALLED_APPS include django_form_builder app.

INSTALLED_APPS = (
other apps
'django_form_builder',

)

3

Django Form Builder, Release 0.1

4 Chapter 1. Requirements and Setup

CHAPTER

TWO

USE SINGLE FIELDS IN YOUR FORM

You can simply take single fields from this app and use them in you own form.
Just in your project include

from django_form_builder import dynamic_fields

and use every field as a normal form field

my_field = dynamic_fields.DynamicFieldClassName(params)

Every field has (or inherit) a raise_error() method that can be overrided to implement cleaning features and vali-
dation functions.

5

Django Form Builder, Release 0.1

6 Chapter 2. Use single fields in your form

CHAPTER

THREE

FIELDS METHODS AND ATTRIBUTES

BaseCustomField is the base class for every custom field.
This class defines two attributes and trhee foundamental methods that make fields work well.

Attributes
• is_complex (default False): if True, specifies that the field is composed by more elementar fields (like two

DateFields);

• is_formset (default False): if True, specifies that the field is a Django Formset.

Methods
• def define_value(self, custom_value=None, **kwargs): it integrates the field initialization with cus-

tom configuration parameters defined by user (e.g. choices of a SelectBox);

• get_fields(self): if field is_complex, it returns a Python list of child fields. Else, it returns [self];

• def raise_error(self, name, cleaned_data, **kwargs):: it integrates clean() method to have a
customizable behaviour processing cleaned_data.

7

https://docs.djangoproject.com/en/2.2/topics/forms/formsets/

Django Form Builder, Release 0.1

8 Chapter 3. Fields methods and attributes

CHAPTER

FOUR

CREATE YOUR OWN FIELDS

If you need to define your own fields inheriting an existing one, you can fastly create them by importing
dynamic_fields

from django_form_builder import dynamic_fields

make an inheritance declaration

class MyCustomField(dynamic_fields.DynamicFieldClassName):
e.g. MyCustomField(BaseCustomField)
...

and override get_fields(), define_value() and raise_error() according to your needs.

9

Django Form Builder, Release 0.1

10 Chapter 4. Create your own fields

CHAPTER

FIVE

BUILD DYNAMIC FORMS

Now you can build your own form dynamically both in Django backend and frontend, just selecting the fields that you
want, in total flexibility and easiness.

Every form can be saved in a configurable storage, in JSON format or simply defined in a Python Dictionary. Please
see django_dynamic_form.dynamic_fields to see all the supported type.

from django_form_builder.forms import BaseDynamicForm
from collections import OrderedDict

constructor_dict = OrderedDict([('Telefono', # field name
('CustomCharField', # defines the FieldType
{'label': 'Telefono',
'required': True,
'help_text': 'Fisso o Mobile',
'pre_text': ''}, # a text to be rendered before the input␣

→˓field
'')),

('Credenziali attive dal',
('BaseDateField',
{'label': 'Credenziali attive dal',
'required': True,
'help_text': 'Data di attivazione delle credenziali',
'pre_text': ''},
'')),

('al',
('BaseDateField',
{'label': 'al',
'required': True,
'help_text': 'data di scadenza delle credenziali.',
'pre_text': ''},
'')),

('Descrizione Attività',
('TextAreaField',
{'label': 'Descrizione Attività',
'required': True,
'help_text': "Descrizione dell'attività per la quale si richiedono le␣

→˓credenziali",
'pre_text': ''},
'')),

('Richiede che le seguenti anagrafiche vengano attivate',
('CustomComplexTableField', # a django fieldset

(continues on next page)

11

Django Form Builder, Release 0.1

(continued from previous page)

{'label': 'Richiede che le seguenti anagrafiche vengano attivate',
'required': True,
'help_text': 'inserire almeno first_name, last_name e email',
'pre_text': ''},
'first_name#last_name#place_of_birth#date_of_birth#codice_fiscale#email

→˓#tel#valid_until'))])

form = BaseDynamicForm.get_form(#class_obj=YourCustomDynFormClass, # None by default,␣
→˓then use BaseDynamicForm

constructor_dict=constructor_dict,
custom_params=None,
#data=data, # if there's some data to load
#files=files, # if there's some file attachments (handled␣

→˓separately)
remove_filefields=False,
remove_datafields=False)

Example of Dynamic Form built via frontend:

Preview of the builded form:

12 Chapter 5. Build dynamic forms

Django Form Builder, Release 0.1

13

Django Form Builder, Release 0.1

14 Chapter 5. Build dynamic forms

CHAPTER

SIX

CREATE YOUR DYNAMICFORMCLASS AND ADD STATIC FIELDS

If you need some static field in your form, than you can define a new Form Class, inheriting BaseDynamicForm

from django_form_builder import dynamic_fields
from django_form_builder.forms import BaseDynamicForm

class MyDynamicForm(BaseDynamicForm):
def __init__(self,

constructor_dict={},
custom_params={},
*args,
**kwargs):

Add a custom static field common to all dynamic forms
self.fields = {}
my_static_field = dynamic_fields.format_field_name(choice_field_name)
my_static_field_data = {'required' : True,

'label': choice_field_label,
'help_text': choice_field_helptext}

my_static_field = getattr(dynamic_fields,
'CustomFieldClass')(**my_static_field_data)

self.fields[my_static_field_id] = my_static_field

call super() constructor to build form
super().__init__(# define it only if you

define a custom field source,
see "Create your own fields" paragraph.
fields_source=dynamic_fields_integration,
initial_fields=self.fields,
constructor_dict=constructor_dict,
custom_params=custom_params,
*args, **kwargs)

if needed, override clean() method with your own params
def clean(self, *args, **kwargs):

cleaned_data = super().clean(own_param=own_value)

15

Django Form Builder, Release 0.1

16 Chapter 6. Create your DynamicFormClass and add static fields

CHAPTER

SEVEN

CONFIGURE YOUR PROJECT TO USE DYNAMIC FORMS

• Step 1
Every Dynamic Form needs a table to store the list of fields that compose it.

Also, it has to be strictly linked to a project model entity to be rendered (e.g. what kind of object wil the form
map? A Book, a Car or something else!?).

In your project’s models, then, create a Model Class to store the list of fields, make it inherit class
DynamicFieldMap and choose the ForeignKey that represents the form linked model entity.

from django_form_builder.dynamic_fields import get_fields_types
from django_form_builder.models import DynamicFieldMap

class MyFieldsListModel(DynamicFieldMap):
"""
This class represents every single form field, each one linked to a unique␣

→˓object
"""

if you want to integrate dynamic fields with your own,
define a new file that import all 'dynamic_fields' and defines others new and
then pass it as param to get_fields_types(class_name=my_custom_fields_file)

my_entity = models.ForeignKey(MyEntityClass, on_delete=models.CASCADE)
DynamicFieldMap._meta.get_field('field_type').choices = get_fields_types()

• Step 2
Every submitted dynamic form, if valid, save its content as a JSON. Once we have our fields model (step 1), we
have to define a Model Class to save our compiled form JSON attribute.

from django_form_builder.models import SavedFormContent

class MyModelClass(SavedFormContent):
"""
This class contains the JSON with all submitted form details
"""
...

• Step 3
In your views, use/override get_form() and compiled_form() methods to respectively build form structure
from scratch (using your step 1 model class) and rebuild and fill it simply by the JSON field.

17

Django Form Builder, Release 0.1

from django_form_builder.models import DynamicFieldMap

...

the class used as foreign key in 'Step 1'
class MyEntityClass(models.Model):

...

def get_form(self,
data=None,
files=None,
remove_filefields=False,
remove_datafields=False,
**kwargs):

"""
Returns the form (empty if data=None)
if remove_filefields is not False, remove from form the passed FileFields
if remove_datafields is True, remove all fields different from FileFields
"""
retrieve all the fields (the model class is in 'Step 1')
form_fields_from_model = self.myfieldslistmodel.all().order_by('ordinamento')
if not form_fields_from_model: return None
Static method of DynamicFieldMap that build the constructor dictionary
constructor_dict = DynamicFieldMap.build_constructor_dict(form_fields_from_

→˓model)

more params to pass with 'data'
custom_params = {'extra_1': value_1,

'extra_2': value_2}
the form retrieved by calling get_form() static method
form = DynamicFieldMap.get_form(# define it only if you

need your custom form:
class_obj=MyDynamicForm,
constructor_dict=constructor_dict,
custom_params=custom_params,
data=data,
files=files,
remove_filefields=remove_filefields,
remove_datafields=remove_datafields)

return form

from django_form_builder.models import SavedFormContent

...

the class used in 'Step 2'
class MyModelClass(SavedFormContent):

...

(continues on next page)

18 Chapter 7. Configure your project to use dynamic forms

Django Form Builder, Release 0.1

(continued from previous page)

def compiled_form(self, files=None, remove_filefields=True):
"""
Returns the builded and filled form
Integrates django_form_builder.models.SavedFormContent.compiled_form
SavedFormContent.compiled_form uses DynamicFieldMap.get_form() filled
"""
set get_form() source class (step 1)
form_source = self.my_entity
set data source class (inherited from 'SavedFormContent')
data_source = self.modulo_compilato

form = SavedFormContent.compiled_form(data_source=data_source,
files=files,
remove_filefields=remove_filefields,
form_source=form_source,
**other_extra_params)

return form

19

Django Form Builder, Release 0.1

20 Chapter 7. Configure your project to use dynamic forms

CHAPTER

EIGHT

UPLOAD P7M AND SIGNED PDF FILES

Custom fields set provides a base class called CustomSignedFileField that via FileSignatureValidator library checks
if an upload attachment is digitally signed.

Also, with get_cleaned_signature_params() method, it returns the sign details

• Signature Validation

• Signing Time

• Signer full Distinguished Name

P7M file fields are built by CustomSignedP7MField(CustomSignedFileField) class.
Signed PDF file fields are built by CustomSignedPdfField(CustomSignedFileField) class.

21

Django Form Builder, Release 0.1

22 Chapter 8. Upload P7M and signed PDF files

CHAPTER

NINE

ADD/REMOVE FORMSET DYNAMICALLY WITH JAVASCRIPT

Django Form Builder provides a particular type of field, CustomComplexTableField, that allows user to easily insert
Django Formset Fields in his form.

The built-in javascript enables form inserting and removing via frontend, simply using the relative buttons!

To build a formset just define the CustomComplexTableField attribute valore setting columuns. Divide each one
using # char and, for every column, define the field type with a dictionary, like in the example

column1({'type':'CustomSelectBoxField', 'choices': 'value1;value2;value3',})#column2({
→˓'type':'CustomRadioBoxField', 'choices': 'value1;value2',})#column3#column4({'type':
→˓'BaseDateField',})

Column with no params dict generate CustomCharField by default.

23

https://docs.djangoproject.com/en/2.2/topics/forms/formsets/

	Requirements and Setup
	Use single fields in your form
	Fields methods and attributes
	Create your own fields
	Build dynamic forms
	Create your DynamicFormClass and add static fields
	Configure your project to use dynamic forms
	Upload P7M and signed PDF files
	Add/Remove Formset dynamically with javascript

